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River networks on the slope-correlated landscape
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We study the morphologies of river networks on various landscapes. In general, the probability density
distribution of drainage aremof the river network scales @(a)~a™". We consider a slope-slope correlation
functionG(r) and define the persistent leng@whereG(r =R) becomes zero. In our restricted solid on solid
network model,R is independent of the system siteand 7 is close to 4/3, which is the value of the
Scheidegger’s river network model with random walk process. We also consider an avalanche modeé® where
is proportional toL. There is a large slope-slope correlation length and the river network does not follow the
directed random walk process with~=1.42.

PACS numbegps): 64.60.Ht, 68.35.Ct, 92.40.Fb

River networks have been of a great deal of interest tay(x)~x? for x<1 with z=a/B [6]. The exponentsy, B
both physicists and geologis{d,2]. The geological pro- andz are called the roughness, the growth, and the dynamic
cesses of the river networks display rich fractal structures. Aexponents, respectively.
river basin has an anisotropic structure that there are two The slope-slope correlation function is definedG(s ,t)
length scales. One is a longitudinal lengthwhich can be  =(Vh(x+r,t)Vh(x,t)) where angular bracket indicates the
regarded as the system sizand the other is a perpendicular average ovex. The slope-slope correlation lengkhis ob-
length L, . The perpendicular length scales &s=L"  tained as the first zero of the slope-slope correlation function
whereH is called the Hurst exponefi2]. If H# 1, the basin  thatG[R(t),t]=0. Ris the persistent length that the slope is
is a self-affine fractal and =1, it is a self similar fractal. correlated. It also can be regarded as the average mountain
The interesting quantity characterizing the properties of rivesize of the system.
basins is the areaof drainage basin which is the number of  The statistical properties of river basins have a close re-
sites connected to each other through drainage directiongation with the morphology of the landscape. So, we study
The probability density distribution of drainage araais  the connection between the probability distribution of basin

characterized by a scaling laj&] area and the slope-slope correlation length of the landscape.
o, The simplest river network can be developed by the random
p(aL)=a "f(aac(L)), (1) walk process. For example, in the Scheidegger's mfglel

the drainage paths are in the direction of high gradients be-
tween watershed and main valley. The drainage direction is
always downward but it may go to the left or to the right
with equal probabilities. In the modaH =1/2 andr=4/3 is
obtained due to the random walk proc¢3§ They are dif-
ferent from the measured valugd=0.75-0.80 and r
=1.41~1.45[2,5] in real basins.

A large number of studies have been carried out to obtain
various statistical properties of river networks and to con-
struct models for the evolution of the drainage networks
[1,3,4,7-11 Some of them belong to the random walk class

wherea.(L) is a characteristic area defined by(L)~L?
with ¢=1+H. The scaling functiorf(x) is a constant for
x—0 and zero forx—o. Fora<ac(L), the distribution of
drainage basin area thus scalepéa)~a™". A lot of river
network modeld3,4] have a directed character due to the
influence of a preferential flow direction. In this case, two
exponentsr and ¢ are related byp=(2— 1)~ [2]. Many
observations in nature show the power lawpgg) with 7
=1.41~1.45[2,5]. However 7 is 4/3 in the Scheidegger
model of the random walk systefl]. Here we consider two
different models to understand on what conditierdeviates with 7= 4/3[3,4]. The others show~1.43, which is similar

fro?oézzscribe the characteristics of landscapes, we consid(te? the results in real basi§-11.
Pes, In this paper, we classify the river networks into two

both the surface width and the slope-slope correlation lengthclasseS' the random walk class and the nonrandom walk
The surface widtiW, which is the root-mean square fluctua- |, "Fi <t we consider the restricted-solid-on-s(R80S

tion of the surface height, is defined as model [12] in which the slope-slope correlation length is
1 12 short and independent of the system dizéfter the surface
W(L,t)= < — > [h(xt) —F(t)]2> ' (2)  Width reaches at the saturated regime, we add a water drop of
L2 % precipitation at every site and then allow the drop to flow
. down to the steepest descent direction to form a pattern of
where h(t) denote the mean height at time The surface the river network on the landscape. The morphology of river
width follows a scaling behaviow~L*g(t/L?), where the network obtained on the landscape shows the vele€0.5
scaling functiong(x) approaches to a constant a1, and  which is the same as the value of Scheidegger métthel
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FIG. 3. The mound siz&(L) vs system siza. is shown for
FIG. 1. The probability distributiop(a,L) versus drainage area L?=16% 32, 64, 12&, and 258. The slope of the fitted line is
ain log-log plot for the system sizas?=16%, 32°, 64, and 128 in 0.98+0.05. This represents that the slope is correlated up to the
the RSOS river basin model. The straight guide line represents system size.
=1.32+0.01. The inset shows the data collapsep@d,L) with 7
=1.32 and¢=1.47. The distribution of drainage basin area for different sys-
tem sizesL =16, 32, 64, and 128 are shown in Fig. 1. The

random walk clags We also present a discrete model in . .
. : . .average is performed over 10000 samples of different real-
which the slope is correlated up to the system size. In this

) izations in landscape and the statistics is taken over all river
case, the morphology of river network cannot be mappe . .
) not over only the river with the largest flow at the outlet. The
into the random walk process.

) . law behavior with the exponent1.32+0.01 is ob-
We consider the RSOS model2] which belongs to the power N = :
Kadar-Paris-Zhang(KP2) [13] universality class. The zﬁg\//sg.in-r?r?e diﬁtse;tc(g)fll?:;i)se 1W|tsi?;cle'3t2hea\r/]vi$r_ ;Llo?/z I’IIZS a
growth algorithm of the RSOS model is following: Select a eferred direction due t?). th.e incline. the relati 5
site on two-dimensional square lattice randomly and deposﬁ’r ,rl recti u '€ Incling, h ign= (
a particle provided the RSOS conditibh|<1 is obeyed — 1)~ = for directed networks is well satisfied. These values

where Ah is the height difference on neighboring heights.are in good agreements with the values4/3 and¢=3/2

For the RSOS model, it is well known that the roughnessObtamed in Scheidegger's mod8]. Thus, if the slope-slope

exponentr~0.4 ind=2+ 1 and the slope-slope correlation correlation length is finite, i.e., independent of the system
lengthR is indépendent of [12] size, we can treat the surface as the coarse grained height by

Once the surface width reaches the saturated regime, V\}Ee size oR. Then the river network can be mapped into the

add a water drop as a precipitation on the sitg/] in order random walk process with=4/3.

to develop river networks. The drop is then allowed to ﬂowthe\/\éeroaslii% %?nssc')cijler;g:gﬁ;ldéscﬁierpﬁg\?\) V;C:;gnrgsz cr:;lrtrr]\l(e:
to one of the three sitesx(-1y—1), (x,y—1), and & y '

4+ 1y—1), causing a directed downward flow. A site with soil, and the heterogeneity of the terrain. They can be taken

the smallest height is selected among them. Each drop th the essential ingrements of the mcided-1§. We preas-

. . sign random numbers from zero to one to all sites on the flat
flows down according to the steepest descent path until i . .
_ . \ . . Substrate. They can represent the heterogeneity of soil mate-
reaches outletsy=0). The drainage aremon a given site is

: 4 .~ rials, i.e., the erodibilities of materials. We then select a site
then obtained by the area connected to the site which is the .

. =~ _randomly. If the random number on that site exceeds a pre-
number of site connected to each other through the drainage

direction. Periodic boundary condition is applied in tke ;

direction and free boundary condition in tiiairection. 10— ' ' '
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FIG. 2. The surface widtkV?(L) against system sideis shown FIG. 4. The probability distribution op(a,L) versus drainage

for P=0.5 for the system size?=32?, 64, 12&, and 256. The  areaa for the system sizet?>=16?, 32, 64, and 128 in the
guide line representsd®=1.78+0.01. In the insetW?(t) versus  avalanche model. The straight guide line represert4.42+0.01.
time t are shown and the straight line is fop20.89+0.01. The inset shows the data collapse with 1.42 and¢p=1.72.
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10° ‘ is 0.98+0.05. That is, in this avalanche model, the slope is
correlated up to the system size. However, in other growth
o | | model such as Family modgl9] and the RSOS modgl 2],

R is independent of..

Once the surface width reaches the saturated regime, we
10° | develop a river network on the surface by the same water
precipitation method of the RSOS model. Figure 4 shows a
. plot of p(a,L) against drainage arem The straight guide
10" 102 10° line representsr=1.42+0.01. The data collapse with

L =1.42 and¢=1.72 is shown in the inset of Fig. 4. To mea-
sure ¢ independently, we monitor the characteristic size of
contributing areaA, defined by

<ab>/<a>

FIG. 5. Plot of the characteristic size of contributing area
(a?)/{a) versus system size for L?=16?, 32, 64, 12&, and
256”. The slope of the fitted line is 1.230.01. (a?)

A= W ~ L¢. (3)
assigned numbd®, a particle is deposited and slides down to
the lowest site among the nearest neighbors. If the lowest sit€he relation can be provided from E@.). Figure 5 shows a
has the neighbor whose height is lower than that, it slideplot (a?)/(a) versus system size. The fitted line represents
again until it reaches the site whose height is equal to og=1.73+0.01. With the value ofr, it satisfys the relation
lower than the neighbor’s heights. If the random number isp=(2—7) ! very well. These values are in an excellent
less thanP, a new site is selected randomly. We call it the agreement with the measurements in real river bg&hand
avalanche model. other modelg1,9]. That is, the basin distribution function of

Our simulations are carried out starting from a flat initial the avalanche model is different from that of the random
condition with a periodic boundary condition in three dimen-walk drainage basin model.
sions. In Fig. 2, we have plotted the surface withf(L) as In Fig. 6, we show the morphologies of two landscapes
a function of system size andW?(t) as a function of time and the corresponding river networks. The landscape ob-
t for the avalanche model. The straight guide lines give usained by the RSOS rule exhibits the configuration with
a=0.90.01 andB=0.45+0.01. The used value of prob- many moderate hills and narrow vallejsee Fig. 6a)]. It
ability P is 0.5, but qualitatively similar values of the expo- shows that the slope-slope correlation is very short. While
nents are obtained for any nonzelfo For simplicity, we the landscape obtained by the avalanche rule exhibits the
restrict our simulations for the cag&e=0.5. We note thatv configuration with few high mountains and broad but deep
~0.9 of the model is close to that of the empirical results invalleys [see Fig. 6c)]. Typical patterns of river networks
nature[14,15,17,18 with a=10 are shown in Figs.(6) and &d). The morphol-

Figure 3 shows the plot of the slope-slope correlationogy of the avalanche model is different from that of the
lengthR(L) versus system siZe The slope of the fitted line RSOS model. In the avalanche model, the number of main

FIG. 6. (@ The landscape
evolved by the RSOS model and
(b) the corresponding river net-
works. (c) The landscape obtained
by the avalanche model and)
the corresponding river networks.
The streams witre=10 are dis-
played for the system sizé?
=128x128.
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streams covering the whole rangeyéxes is small and the scales ap(a)~a™ " with 7=1.32. If we consider a coarse
number of branches contributed to the main stream is largeyrained height by the slope-slope correlation length sBale
They are thus distributed in relatively broaden range due tghe network can be treated as the random walk process. So
the existence of deep and broad valleys. These features afg: insist that the network with shaRwill have r=4/3. We
manifested by the large value of exponéht have also presented an avalanche model with long slope-
Empirically, it is expected that water flows to the down- sjope correlation length which contains the features of ran-
ward direction along the side of mountain. Therefore, it maygom precipitation, avalanching, and erodibility of soils. In
not follow the random walk process when water flows alongine system, the slope is correlated up to the system size and
the one tilted side of big mountains. If the slope-slope cor-~1 42 which deviates from the value of the random walk
relation length of a landscape is short, the system can bocess. In real river basins=1.41~1.45 indicate that the
coarse grained bk and the random walk process plays anformation of the river network does not follow the random
important role in the formation of river network. However, if 41k process. This is due to the long slope-slope correlation

a system has long slope-slope correlation length, the develangth. It is interesting to measure the slope-slope correlation
opment of river network cannot be achieved by the randomength in natural river basins.

walk process. In the system where the slope is correlated up
to the system size, we expect that the pattern of river network This work was supported in part by the Korean Science
deviates from the random walk process. and Engineering FoundatiofGrant No. 98-0702-05-01})3

In summary, we have studied the river networks on twoby the Ministry of Education through BK21 project, and by
different models. The RSOS model has short slope-slopthe Korea Research FoundatiofGrant No. 1999-015-
correlation length and the distribution of the drainage @ea DP0090, J.M.K).
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