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River networks on the slope-correlated landscape
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We study the morphologies of river networks on various landscapes. In general, the probability density
distribution of drainage areaa of the river network scales asP(a);a2t. We consider a slope-slope correlation
functionG(r ) and define the persistent lengthR whereG(r 5R) becomes zero. In our restricted solid on solid
network model,R is independent of the system sizeL and t is close to 4/3, which is the value of the
Scheidegger’s river network model with random walk process. We also consider an avalanche model, whereR
is proportional toL. There is a large slope-slope correlation length and the river network does not follow the
directed random walk process witht'1.42.

PACS number~s!: 64.60.Ht, 68.35.Ct, 92.40.Fb
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River networks have been of a great deal of interes
both physicists and geologists@1,2#. The geological pro-
cesses of the river networks display rich fractal structures
river basin has an anisotropic structure that there are
length scales. One is a longitudinal lengthL i which can be
regarded as the system sizeL and the other is a perpendicula
length L' . The perpendicular length scales asL'5LH

whereH is called the Hurst exponent@2#. If HÞ1, the basin
is a self-affine fractal and ifH51, it is a self similar fractal.
The interesting quantity characterizing the properties of ri
basins is the areaa of drainage basin which is the number
sites connected to each other through drainage directi
The probability density distribution of drainage areaa is
characterized by a scaling law@2#

p~a,L !5a2t f „a/ac~L !…, ~1!

whereac(L) is a characteristic area defined byac(L);Lf

with f511H. The scaling functionf (x) is a constant for
x→0 and zero forx→`. For a!ac(L), the distribution of
drainage basin area thus scales asp(a);a2t. A lot of river
network models@3,4# have a directed character due to t
influence of a preferential flow direction. In this case, tw
exponentst and f are related byf5(22t)21 @2#. Many
observations in nature show the power law ofp(a) with t
51.41;1.45 @2,5#. However t is 4/3 in the Scheidegge
model of the random walk system@3#. Here we consider two
different models to understand on what conditionst deviates
from 4/3.

To describe the characteristics of landscapes, we cons
both the surface width and the slope-slope correlation len
The surface widthW, which is the root-mean square fluctu
tion of the surface height, is defined as

W~L,t ![K 1

L2 (
x

@h~x,t !2h̄~ t !#2L 1/2

, ~2!

where h̄(t) denote the mean height at timet. The surface
width follows a scaling behaviorW;Lag(t/Lz), where the
scaling functiong(x) approaches to a constant forx@1, and
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g(x);xb for x!1 with z5a/b @6#. The exponentsa, b
andz are called the roughness, the growth, and the dyna
exponents, respectively.

The slope-slope correlation function is defined asG(r ,t)
5^¹h(x1r ,t)¹h(x,t)& where angular bracket indicates th
average overx. The slope-slope correlation lengthR is ob-
tained as the first zero of the slope-slope correlation func
thatG@R(t),t#50. R is the persistent length that the slope
correlated. It also can be regarded as the average mou
size of the system.

The statistical properties of river basins have a close
lation with the morphology of the landscape. So, we stu
the connection between the probability distribution of ba
area and the slope-slope correlation length of the landsc
The simplest river network can be developed by the rand
walk process. For example, in the Scheidegger’s model@3#,
the drainage paths are in the direction of high gradients
tween watershed and main valley. The drainage directio
always downward but it may go to the left or to the rig
with equal probabilities. In the model,H51/2 andt54/3 is
obtained due to the random walk process@3#. They are dif-
ferent from the measured valuesH50.75;0.80 and t
51.41;1.45 @2,5# in real basins.

A large number of studies have been carried out to ob
various statistical properties of river networks and to co
struct models for the evolution of the drainage netwo
@1,3,4,7–11#. Some of them belong to the random walk cla
with t54/3 @3,4#. The others showt'1.43, which is similar
to the results in real basins@9–11#.

In this paper, we classify the river networks into tw
classes: the random walk class and the nonrandom w
class. First, we consider the restricted-solid-on-solid~RSOS!
model @12# in which the slope-slope correlation length
short and independent of the system sizeL. After the surface
width reaches at the saturated regime, we add a water dro
precipitation at every site and then allow the drop to flo
down to the steepest descent direction to form a pattern
the river network on the landscape. The morphology of riv
network obtained on the landscape shows the valueH50.5
which is the same as the value of Scheidegger model~the
3121 ©2000 The American Physical Society
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random walk class!. We also present a discrete model
which the slope is correlated up to the system size. In
case, the morphology of river network cannot be mapp
into the random walk process.

We consider the RSOS model@12# which belongs to the
Kadar-Paris-Zhang~KPZ! @13# universality class. The
growth algorithm of the RSOS model is following: Select
site on two-dimensional square lattice randomly and dep
a particle provided the RSOS conditionuDhu<1 is obeyed,
where Dh is the height difference on neighboring heigh
For the RSOS model, it is well known that the roughne
exponenta'0.4 in d5211 and the slope-slope correlatio
lengthR is independent ofL @12#.

Once the surface width reaches the saturated regime
add a water drop as a precipitation on the site (x,y) in order
to develop river networks. The drop is then allowed to flo
to one of the three sites (x21,y21), (x,y21), and (x
11,y21), causing a directed downward flow. A site wi
the smallest height is selected among them. Each drop
flows down according to the steepest descent path un
reaches outlets (y50). The drainage areaa on a given site is
then obtained by the area connected to the site which is
number of site connected to each other through the drain
direction. Periodic boundary condition is applied in thex
direction and free boundary condition in they direction.

FIG. 1. The probability distributionp(a,L) versus drainage are
a in log-log plot for the system sizesL25162, 322, 642, and 1282 in
the RSOS river basin model. The straight guide line represent
51.3260.01. The inset shows the data collapse ofp(a,L) with t
51.32 andf51.47.

FIG. 2. The surface widthW2(L) against system sizeL is shown
for P50.5 for the system sizeL25322, 642, 1282, and 2562. The
guide line represents 2a51.7860.01. In the inset,W2(t) versus
time t are shown and the straight line is for 2b50.8960.01.
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The distribution of drainage basin area for different sy
tem sizesL516, 32, 64, and 128 are shown in Fig. 1. Th
average is performed over 10 000 samples of different r
izations in landscape and the statistics is taken over all r
not over only the river with the largest flow at the outlet. T
power law behavior with the exponentt51.3260.01 is ob-
served. The data collapse witht51.32 and f51.47 is
shown in the inset of Fig. 1. Since the water flow has
preferred direction due to the incline, the relationf5(2
2t)21 for directed networks is well satisfied. These valu
are in good agreements with the valuest54/3 andf53/2
obtained in Scheidegger’s model@3#. Thus, if the slope-slope
correlation length is finite, i.e., independent of the syst
size, we can treat the surface as the coarse grained heig
the size ofR. Then the river network can be mapped into t
random walk process witht54/3.

We also consider other discrete model which may mim
the erosion of soil material by water flow, avalanche of t
soil, and the heterogeneity of the terrain. They can be ta
as the essential ingrements of the model@14–16#. We preas-
sign random numbers from zero to one to all sites on the
substrate. They can represent the heterogeneity of soil m
rials, i.e., the erodibilities of materials. We then select a s
randomly. If the random number on that site exceeds a p

FIG. 3. The mound sizeR(L) vs system sizeL is shown for
L25162, 322, 642, 1282, and 2562. The slope of the fitted line is
0.9860.05. This represents that the slope is correlated up to
system size.

FIG. 4. The probability distribution ofp(a,L) versus drainage
areaa for the system sizesL25162, 322, 642, and 1282 in the
avalanche model. The straight guide line representst51.4260.01.
The inset shows the data collapse witht51.42 andf51.72.
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assigned numberP, a particle is deposited and slides down
the lowest site among the nearest neighbors. If the lowest
has the neighbor whose height is lower than that, it sli
again until it reaches the site whose height is equal to
lower than the neighbor’s heights. If the random numbe
less thanP, a new site is selected randomly. We call it t
avalanche model.

Our simulations are carried out starting from a flat init
condition with a periodic boundary condition in three dime
sions. In Fig. 2, we have plotted the surface widthW2(L) as
a function of system sizeL andW2(t) as a function of time
t for the avalanche model. The straight guide lines give
a50.960.01 andb50.4560.01. The used value of prob
ability P is 0.5, but qualitatively similar values of the exp
nents are obtained for any nonzeroP. For simplicity, we
restrict our simulations for the caseP50.5. We note thata
'0.9 of the model is close to that of the empirical results
nature@14,15,17,18#.

Figure 3 shows the plot of the slope-slope correlat
lengthR(L) versus system sizeL. The slope of the fitted line

FIG. 5. Plot of the characteristic size of contributing ar
^a2&/^a& versus system sizeL for L25162, 322, 642, 1282, and
2562. The slope of the fitted line is 1.7360.01.
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is 0.9860.05. That is, in this avalanche model, the slope
correlated up to the system size. However, in other gro
model such as Family model@19# and the RSOS model@12#,
R is independent ofL.

Once the surface width reaches the saturated regime
develop a river network on the surface by the same wa
precipitation method of the RSOS model. Figure 4 show
plot of p(a,L) against drainage areaa. The straight guide
line representst51.4260.01. The data collapse witht
51.42 andf51.72 is shown in the inset of Fig. 4. To mea
suref independently, we monitor the characteristic size
contributing area,A, defined by

A5
^a2&

^a&
;Lf. ~3!

The relation can be provided from Eq.~1!. Figure 5 shows a
plot ^a2&/^a& versus system sizeL. The fitted line represents
f51.7360.01. With the value oft, it satisfys the relation
f5(22t)21 very well. These values are in an excelle
agreement with the measurements in real river basins@5# and
other models@1,9#. That is, the basin distribution function o
the avalanche model is different from that of the rando
walk drainage basin model.

In Fig. 6, we show the morphologies of two landscap
and the corresponding river networks. The landscape
tained by the RSOS rule exhibits the configuration w
many moderate hills and narrow valleys@see Fig. 6~a!#. It
shows that the slope-slope correlation is very short. Wh
the landscape obtained by the avalanche rule exhibits
configuration with few high mountains and broad but de
valleys @see Fig. 6~c!#. Typical patterns of river networks
with a>10 are shown in Figs. 6~b! and 6~d!. The morphol-
ogy of the avalanche model is different from that of t
RSOS model. In the avalanche model, the number of m
d
-
d

.

FIG. 6. ~a! The landscape
evolved by the RSOS model an
~b! the corresponding river net
works.~c! The landscape obtaine
by the avalanche model and~d!
the corresponding river networks
The streams witha>10 are dis-
played for the system sizeL2

51283128.
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streams covering the whole range ofy axes is small and the
number of branches contributed to the main stream is la
They are thus distributed in relatively broaden range due
the existence of deep and broad valleys. These feature
manifested by the large value of exponentH.

Empirically, it is expected that water flows to the dow
ward direction along the side of mountain. Therefore, it m
not follow the random walk process when water flows alo
the one tilted side of big mountains. If the slope-slope c
relation length of a landscape is short, the system can
coarse grained byR and the random walk process plays
important role in the formation of river network. However,
a system has long slope-slope correlation length, the de
opment of river network cannot be achieved by the rand
walk process. In the system where the slope is correlate
to the system size, we expect that the pattern of river netw
deviates from the random walk process.

In summary, we have studied the river networks on t
different models. The RSOS model has short slope-sl
correlation length and the distribution of the drainage area
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scales asp(a);a2t with t'1.32. If we consider a coars
grained height by the slope-slope correlation length scaleR,
the network can be treated as the random walk process
we insist that the network with shortR will have t54/3. We
have also presented an avalanche model with long slo
slope correlation length which contains the features of r
dom precipitation, avalanching, and erodibility of soils.
the system, the slope is correlated up to the system size
t'1.42, which deviates from the value of the random wa
process. In real river basins,t51.41;1.45 indicate that the
formation of the river network does not follow the rando
walk process. This is due to the long slope-slope correla
length. It is interesting to measure the slope-slope correla
length in natural river basins.
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